DNMTs are required for delayed genome instability caused by radiation
نویسندگان
چکیده
The ability of ionizing radiation to initiate genomic instability has been harnessed in the clinic where the localized delivery of controlled doses of radiation is used to induce cell death in tumor cells. Though very effective as a therapy, tumor relapse can occur in vivo and its appearance has been attributed to the radio-resistance of cells with stem cell-like features. The molecular mechanisms underlying these phenomena are unclear but there is evidence suggesting an inverse correlation between radiation-induced genomic instability and global hypomethylation. To further investigate the relationship between DNA hypomethylation, radiosensitivity and genomic stability in stem-like cells we have studied mouse embryonic stem cells containing differing levels of DNA methylation due to the presence or absence of DNA methyltransferases. Unexpectedly, we found that global levels of methylation do not determine radiosensitivity. In particular, radiation-induced delayed genomic instability was observed at the Hprt gene locus only in wild-type cells. Furthermore, absence of Dnmt1 resulted in a 10-fold increase in de novo Hprt mutation rate, which was unaltered by radiation. Our data indicate that functional DNMTs are required for radiation-induced genomic instability, and that individual DNMTs play distinct roles in genome stability. We propose that DNMTS may contribute to the acquirement of radio-resistance in stem-like cells.
منابع مشابه
Different aspects of cytochalasin B Blocked micronucleus cytome (CBMN cyt) assay as a comprehensive measurement tool for radiobiological studies, biological dosimetry and genome instability
It is now universally accepted that DNA is the main target for damages caused by physical and chemical genotoxicants. Although there are different methods to measure directly the induced DNA damages but due to fast repair processes in cellular environment, most of the damages would be repaired even before sampling, therefore processed DNA damages, i.e. damages left unrepaired after acting repai...
متن کاملRole of microRNAs and DNA Methyltransferases in Transmitting Induced Genomic Instability between Cell Generations
There is limited understanding of how radiation or chemicals induce genomic instability, and how the instability is epigenetically transmitted to the progeny of exposed cells or organisms. Here, we measured the expression of microRNAs (miRNAs) and DNA methyltransferases (DNMTs) in murine embryonal fibroblasts exposed to ionizing radiation or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which wer...
متن کاملGenomic instability induced by ionizing radiation.
Genomic instability is characterized by the increased rate of acquisition of alterations in the mammalian genome. These changes encompass a diverse set of biological end points including karyotypic abnormalities, gene mutation and amplification, cellular transformation, clonal heterogeneity and delayed reproductive cell death. The loss of stability of the genome is becoming accepted as one of t...
متن کاملRole of Ku80-dependent end-joining in delayed genomic instability in mammalian cells surviving ionizing radiation.
Ionizing radiation induces delayed destabilization of the genome in the progenies of surviving cells. This phenomenon, which is called radiation-induced genomic instability, is manifested by delayed induction of radiation effects, such as cell death, chromosome aberration, and mutation in the progeny of cells surviving radiation exposure. Previously, there was a report showing that delayed cell...
متن کاملUV radiation induces delayed hyperrecombination associated with hypermutation in human cells.
Ionizing radiation induces delayed genomic instability in human cells, including chromosomal abnormalities and hyperrecombination. Here, we investigate delayed genome instability of cells exposed to UV radiation. We examined homologous recombination-mediated reactivation of a green fluorescent protein (GFP) gene in p53-proficient human cells. We observed an approximately 5-fold enhancement of d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012